Sepsis is a dynamic, acute, infectious disease syndrome characterized by dysregulated thrombo-inflammatory responses. The high mortality associated with sepsis has been recognized since the earliest clinicians' writings. Despite this, advances in the treatment of sepsis have been more modest. This is limited, in part, by the heterogeneity in the definition, population, presentation, and causal factors of infectious syndromes. Given the persistently high morbidity and mortality associated with sepsis, a better understanding of the dysregulated cellular biology underpinning sepsis is needed. Platelets are small, anucleate cells that have hemostatic, inflammatory, and immune-mediating properties. Platelets are the second most common circulating blood cell, and emerging evidence suggests that platelets serve as sentinel and effector cells during infectious syndromes. Nevertheless, the molecular and functional changes that occur in platelets during sepsis, and their impact on the clinical course of infected patients, remain incompletely understood. In this review, we first highlight the complex and dynamic pathophysiology characteristics of acute, systemic infections and we then discuss established and emerging evidence of the roles of platelets in sepsis.
Learning Objectives• Understand the systemic pathophysiology and thromboinflammation characteristic of human infectious disease syndromes • Review the role of platelets in sepsis as modulating host hemostatic, inflammatory, and immune activities