Immunization against self-tumor antigens can induce T-regulatory cells which inhibit proliferation of Type I CD4+ T-helper (Th1) and CD8+ cytotoxic T-cells. Type I T-cells are required for potent anti-tumor immunity. We questioned whether immunosuppressive epitopes could be identified and deleted from a cancer vaccine targeting IGFBP-2 and enhance vaccine efficacy. Screening breast cancer patient lymphocytes with IFN-γ and IL-10 ELISPOT, we found epitopes in the N-terminus of IGFBP-2 that elicited predominantly Th1 while the C-terminus stimulated Th2 and mixed Th1/Th2 responses. Epitope-specific Th2 demonstrated a higher functional avidity for antigen than epitopes which induced IFN-γ (p=0.014). We immunized TgMMTV-neu mice with DNA constructs encoding IGFBP-2 N-and C-termini. T-cell lines expanded from the C-terminus vaccinated animals secreted significantly more Type II cytokines than those vaccinated with the N-terminus and could not control tumor growth when infused into tumor-bearing animals. In contrast, N-terminus epitope-specific T-cells secreted Th1 cytokines and significantly inhibited tumor growth, as compared with naïve T-cells, when adoptively transferred (p=0.005). To determine whether removal of Th2 inducing epitopes had any effect on the vaccinated anti-tumor response, we immunized mice with the N-terminus, C-terminus and a mix of equivalent concentrations of both vaccines. The N-terminus vaccine significantly inhibited tumor growth (p<0.001) as compared to the C-terminus vaccine which had no anti-tumor effect. Mixing the C-terminus with the N-terminus vaccine abrogated the anti-tumor response of the N-terminus vaccine alone. The clinical efficacy of cancer vaccines targeting self-tumor antigens may be greatly improved by identification and removal of immunosuppressive epitopes.