Objective
To investigate the role of adhesion molecules in C protein-induced myositis (CIM), a murine model for polymyositis (PM).
Methods
CIM was induced in wild type mice, L-selectin-deficient (L-selectin-/-) mice, ICAM-1-deficient (ICAM-1-/-) mice, and both L-selectin- and ICAM-1-deficient (L-selectin-/-ICAM-1-/-) mice. The severity of myositis, inflammatory cell infiltration, and mRNA expression in the inflamed muscles were examined. The effect of dendritic polyglycerol sulfate (dPGS), a synthetic inhibitor that suppresses the function of L-selectin and endothelial P-selectin, was also examined.
Results
L-selectin-/- mice and L-selectin-/-ICAM-1-/- mice developed significantly less severe myositis compared to wild type mice, while ICAM-1 deficiency did not inhibit the development of myositis. L-selectin-/- mice transferred with wild type T cells developed myositis. Wild type mice treated with dPGS significantly diminished the severity of myositis compared to control-treated wild type mice.
Conclusions
These data indicate that L-selectin plays a major role in the development of CIM, whereas ICAM-1 plays a lesser, if any, role in the development of CIM. L-selectin-targeted therapy may be a candidate for the treatment of PM.