Most of Quantum Secret Sharing(QSS) are (n, n) threshold 2-level schemes, in which the 2-level secret cannot be reconstructed until all n shares are collected. In this paper, we propose a (t, n) threshold d-level QSS scheme, in which the d-level secret can be reconstructed only if at least t shares are collected. Compared with (n, n) threshold 2-level QSS, the proposed QSS provides better universality, flexibility, and practicability. Moreover, in this scheme, any one of the participants does not know the other participants’ shares, even the trusted reconstructor Bob
1 is no exception. The transformation of the particles includes some simple operations such as d-level CNOT, Quantum Fourier Transform(QFT), Inverse Quantum Fourier Transform(IQFT), and generalized Pauli operator. The transformed particles need not to be transmitted from one participant to another in the quantum channel. Security analysis shows that the proposed scheme can resist intercept-resend attack, entangle-measure attack, collusion attack, and forgery attack. Performance comparison shows that it has lower computation and communication costs than other similar schemes when 2 < t < n − 1.