Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Brain tumor (BT) is one of many malignancies that have substantially enhanced global human morbidity and mortality rates. Early detection and characterization of glioma are essential for effective preventive strategies. Currently, the use of Transformers, a deep learning model for BT diagnosis and treatment, is attracting significant attention. The transformer self‐attention mechanism automatically learns the associations between input data for efficient processing and analysis. Research indicates that Transformers could play an essential role in the BT segmentation of magnetic resonance imaging (MRI) images, the MRI and histopathology‐based grading of brain cancer, BT molecular expression prediction, the classification of primary brain metastasis sites, voxel‐level dose and BT radiotherapy outcome prediction, synergistic prediction, and the pathway deconvolution of drug combinations. In this review, the feasibility, accuracy, and applicability of various algorithms are systematically analyzed and their prospects are discussed. Overall, this review aimed to discuss and provide an overview of the increasing applications of Transformers in real‐time BT detection and therapy, indicating their broad prospects and potential. In the future, Transformers are expected to be increasingly used for the diagnosis and subsequent treatment of BT because of the continuous development and improvement of Transformer‐based deep learning technology. However, more work is required to investigate their properties for anomaly detection, medical image classification, network design development, and application to other medical data.
Brain tumor (BT) is one of many malignancies that have substantially enhanced global human morbidity and mortality rates. Early detection and characterization of glioma are essential for effective preventive strategies. Currently, the use of Transformers, a deep learning model for BT diagnosis and treatment, is attracting significant attention. The transformer self‐attention mechanism automatically learns the associations between input data for efficient processing and analysis. Research indicates that Transformers could play an essential role in the BT segmentation of magnetic resonance imaging (MRI) images, the MRI and histopathology‐based grading of brain cancer, BT molecular expression prediction, the classification of primary brain metastasis sites, voxel‐level dose and BT radiotherapy outcome prediction, synergistic prediction, and the pathway deconvolution of drug combinations. In this review, the feasibility, accuracy, and applicability of various algorithms are systematically analyzed and their prospects are discussed. Overall, this review aimed to discuss and provide an overview of the increasing applications of Transformers in real‐time BT detection and therapy, indicating their broad prospects and potential. In the future, Transformers are expected to be increasingly used for the diagnosis and subsequent treatment of BT because of the continuous development and improvement of Transformer‐based deep learning technology. However, more work is required to investigate their properties for anomaly detection, medical image classification, network design development, and application to other medical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.