TC21 is a Ras-like GTPase with high oncogenic potential that is found mutated in some human tumors and overexpressed in breast cancer cell lines. We have conducted cellular and biochemical studies in order to understand the role of this protein in signal transduction and to unveil the signaling elements that participate in the TC21 pathway. Using gene transfer experiments, we demonstrate here that the TC21 oncogene can induce both cellular transformation in mouse ®broblasts and neuronal-like di erentiation in rat PC12 cells. Interestingly, the proto-oncogenic version of TC21 shows also a lower, but signi®cant, activity in both biological processes. We also demonstrate that the similarity of the cellular responses induced by TC21 and Ras derive from the utilization of overlapping pathways. Thus, the exchange of guanosine nucleotides in wild type TC21 is catalyzed by Ras exchange factors. Moreover, TC21 binds physically to c-Raf-1 in a GTP-dependent manner. Finally, overexpression of TC21 G23V in NIH3T3 cells results in the activation of c-Raf-1 and the MAPK and the JNK branches of serine/threonine cascades. From these results, we conclude that TC21 promotes Ras-like responses in diverse cell types due to the use of overlapping, if not identical, signaling elements of the Ras oncogenic pathway.