2023
DOI: 10.3390/make5030055
|View full text |Cite
|
Sign up to set email alerts
|

Tabular Machine Learning Methods for Predicting Gas Turbine Emissions

Abstract: Predicting emissions for gas turbines is critical for monitoring harmful pollutants being released into the atmosphere. In this study, we evaluate the performance of machine learning models for predicting emissions for gas turbines. We compared an existing predictive emissions model, a first-principles-based Chemical Kinetics model, against two machine learning models we developed based on the Self-Attention and Intersample Attention Transformer (SAINT) and eXtreme Gradient Boosting (XGBoost), with the aim to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
references
References 27 publications
0
0
0
Order By: Relevance