Organic photovoltaic research is continuing in order to improve the efficiency and stability of the products. Organic devices have recently demonstrated excellent efficiency, bringing them closer to the market. Understanding the relationship between the microscopic parameters of the device and the conditions under which it is prepared and operated is essential for improving performance at the device level. This review paper emphasizes the importance of the parameter extraction stage for organic solar cell investigations by offering various device models and extraction methodologies. In order to link qualitative experimental measurements to quantitative microscopic device parameters with a minimum number of experimental setups, parameter extraction is a valuable step. The number of experimental setups directly impacts the pace and cost of development. Several experimental and material processing procedures, including the use of additives, annealing, and polymer chain engineering, are discussed in terms of their impact on the parameters of organic solar cells. Various analytical, numerical, hybrid, and optimization methods were introduced for parameter extraction based on single, multiple diodes and drift-diffusion models. Their validity for organic devices was tested by extracting the parameters of some available devices from the literature.