Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as important compound in the extracellular matrix of virtually all microbial life and in Candidatus Accumulibacter phosphatis, a well-studied polyphosphate-accumulating organism, in particular. Here, bioaggregates highly enriched with these bacteria (approx. 95% based on proteomic data) were used to study the production of NulOs in an enrichment of this microorganism. Fluorescence lectin-binding analysis, enzymatic quantification, and mass spectrometry were used to analyze the different NulOs present, showing a wide distribution and variety of these carbohydrates, such as sialic acids and bacterial NulOs, in the bioaggregates. Phylogenetic analysis confirmed the potential of Ca. Accumulibacter to produce different types of NulOs. Proteomic analysis showed the ability of Ca. Accumulibacter to reutilize and reincorporate these carbohydrates. This investigation points out the importance of diverse NulOs in non-pathogenic bacteria, which are normally overlooked. Sialic acids and other NulOs should be further investigated for their role in the ecology of Ca. Accumulibacter in particular, and biofilms in general.