2021
DOI: 10.48550/arxiv.2101.11924
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Tackling the muon identification in water Cherenkov detectors problem for the future Southern Wide-field Gamma-ray Observatory by means of Machine Learning

Abstract: This paper presents several approaches to deal with the problem of identifying muons in a water Cherenkov detector with a reduced water volume and 4 PMTs. Different perspectives of information representation are used and new features are engineered using the specific domain knowledge. As results show, these new features, in combination with the convolutional layers, are able to achieve a good performance avoiding overfitting and being able to generalise properly for the test set. The results also prove that th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?