a b s t r a c tNitric oxide (NO) is a gaseotransmitter, which is involved in many signaling processes in health and disease. Three enzymes generate NO from L-arginine, with citrulline formed as a by-product: neuronal NO synthase (nNOS or NOS1), endothelial NOS (eNOS or NOS3) and inducible NOS (iNOS or NOS2). NO is a ligand of soluble guanylyl cyclase (sGC), an intracellular heterodimer enzyme that catalyzes the conversion of guanosine triphosphate (GTP) to cyclic GMP (cGMP). cGMP further activates protein kinase G that eventually reduces the smooth muscle tone in bronchi or vessels. Phosphodiesterase 5 (PDE 5 ) degrades cGMP to GMP. However, NO reacts with superoxide anion (O À 2 ), leading to formation of the proinflammatory molecule peroxynitrite.Under physiological conditions, NO plays a homeostatic bronchoprotective role in healthy subjects. In obstructive airway diseases, NO can be beneficial by its bronchodilating effect, but could also be detrimental by the formation of peroxynitrite. Since asthma and COPD are associated with increased levels of exhaled NO, chronic inflammation and increased airway smooth muscle tone, the NO/sGC/cGMP pathway could be involved in these highly prevalent obstructive airway diseases. Here we review the involvement of NO, NO synthases, guanylyl cyclases, cGMP and phophodiesterase-5 in asthma and COPD and potential therapeutic approaches to modulate this pathway.