Purpose
This paper aims to depict the erosion performance of two HVOF-coated micron layers (Colmonoy-88 and Stellite-6) on pump impeller steel (SS-410) by using Taguchi's method. Taguchi's array (L16) was used to optimize the erosion wear (in terms of weight loss) by using four influencing parameters such as rotational speed, solid concentration, average particle size and time which were varied at four different levels.
Design/methodology/approach
The experiments were carried out by using a Ducom slurry tester with rotational speed in the range of 750-1,500 rpm, solid concentration of 35-65 per cent by weight, time period of 75-210 min and average particle sizes in the range of < 53 to 250 µm. Bottom Ash with a nominal size range of < 53 to 250 µm was used as erodent. The process parameters were optimized by using Taguchi's method. The ANOVA method was used to validate the results given by Taguchi's method.
Findings
The results revealed that the presence of both carbides and borides and the additional presence of Cr in Colmonoy-88 coating enhancing the slurry erosion resistance of Colmonoy-88 coating. Moreover, the chromium and tungsten carbide particles help in increasing the bond strength between the coating and the substrate material. Further, it was also found that the time was the most dominant factor as compared to other factors.
Originality/value
The very less work has been reported on optimization of erosion wear response of Colmonoy-88 and Stellite-6 coatings by using different design of experiment techniques. Further, the erosion wear mechanism of both coatings has been studied by using image j analysis software.