The separation between CH 4 and N 2 bears importance in coalbed methane enrichment, and activated carbon is a major adsorbent for industrial PSA (pressure swing adsorption) separation. However, the adsorption of both gases shows supercritical features, and the physicochemical properties are also similar, which results in similar adsorption behavior and renders the separation difficult. To maximize the separation coefficient, the effect of carbon pore structure on the separation was studied and a series of carbons was prepared at different extent of activation. The effect of specific surface area, pore size and pore volume on the separation coefficient was observed and a linear correlation between the separation coefficient and the small pore (0.7-1.3 nm) volume reduced to unit surface area was shown.