Developing unconventional electrolytes such as ionic liquids (ILs) and deep eutectic solvents (DESs) has led to remarkable advances in electrochemical energy storage and conversion devices. However, the understanding of the electrode−electrolyte interfaces of these electrolytes, specifically the liquid structure and the charge/ electron transfer mechanism and rates, is lacking due to the complexity of molecular interactions, the difficulty in studying the buried interfaces with nanometer-scale resolution, and the distribution of the time scales for the various interfacial events. This Feature Article outlines the standing questions in the field, summarizes some of the exciting approaches and results, and discusses our contributions to probing the electrified interfaces by electrochemical impedance spectroscopy (EIS), surface-enhanced Raman spectroscopy (SERS), and neutron reflectivity (NR). The related findings are analyzed within electrical double-layer models to provide a framework for studying ILs, DESs, and, more broadly, the concentrated hydrogen-bonded electrolytes.