Tailoring MnO2 Cathode Interface via Organic–Inorganic Hybridization Engineering for Ultra‐Stable Aqueous Zinc‐Ion Batteries
Yaxi Ding,
Chun Cai,
Longtao Ma
et al.
Abstract:Manganese (Mn)‐based aqueous zinc ion batteries show great promise for large‐scale energy storage due to their high capacity, environmental friendliness, and low cost. However, they suffer from the severe capacity decay associated with the dissolution of Mn from the cathode/electrolyte interface. In this study, theoretical modeling inspires that the amino acid molecule, isoleucine (Ile), can be an ideal surface coating material for α‐MnO2 to stabilize the surface Mn lattice and mitigate Mn dissolution, thereby… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.