In high harmonic generation (HHG), Laguerre-Gaussian (LG) beams are used to generate extreme ultraviolet (XUV) vortices with well-defined orbital angular momentum (OAM), which have potential applications in fields such as microscopy and spectroscopy. We conducted an experimental study on the HHG driven by vortex and Gaussian beams. We found that the intensity of vortex harmonics was positively correlated with the laser energy and gas pressure. The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus. The ring-like structures observed in the vortex harmonics, and the interference of quantum paths provide an explanation for the distinct structural characteristics. Moreover, by adjusting the relative position between the jet and laser focus, it is possible to discern the contributions from different quantum paths. The optimization of the HH vortex field is applicable to the XUV, which opens new avenues for exploiting the potential in optical spin or manipulating electrons using the photon with tunable orbital angular momentum.