Neutron scattering from single crystals has been used to determine the magnetic structure and magnon dynamics of FePS 3 , an S = 2 Ising-like quasi-two-dimensional antiferromagnet with a honeycomb lattice. The magnetic structure has been confirmed to have a magnetic propagation vector of k M = [ 01 1 2 ] and the moments are collinear with the normal to the ab planes. The magnon data could be modeled using a Heisenberg Hamiltonian with a single-ion anisotropy. Magnetic interactions up to the third in-plane nearest neighbor needed to be included for a suitable fit. The best fit parameters for the in-plane exchange interactions were J 1 = 1.46, J 2 = −0.04, and J 3 = −0.96 meV. The single-ion anisotropy is large, = 2.66 meV, explaining the Ising-like behavior of the magnetism in the compound. The interlayer exchange is very small, J = −0.0073 meV, proving that FePS 3 is a very good approximation to a two-dimensional magnet.