2020
DOI: 10.1007/978-3-030-60936-8_13
|View full text |Cite
|
Sign up to set email alerts
|

Taking Advantage of Highly-Correlated Attributes in Similarity Queries with Missing Values

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
3

Year Published

2022
2022
2022
2022

Publication Types

Select...
2
2
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 9 publications
0
2
0
3
Order By: Relevance
“…As future work, we aim to assess the subjective quality of our tool with domain specialists, assisted by Sketch-GUI . We also intend to include missing data treatment into the preprocessing module, reducing the impact of incompleteness over similarity queries and EDA [Rodrigues et al 2020].…”
Section: Discussionmentioning
confidence: 99%
“…As future work, we aim to assess the subjective quality of our tool with domain specialists, assisted by Sketch-GUI . We also intend to include missing data treatment into the preprocessing module, reducing the impact of incompleteness over similarity queries and EDA [Rodrigues et al 2020].…”
Section: Discussionmentioning
confidence: 99%
“…Also, in [Maheshwari et al 2021] the authors exploited several visual features to identify COVID-19 in images. However, few existing studies make the employed visual features available for download, e.g., [Chino et al 2015;Rodrigues et al 2020]. Such studies usually limit the provided data to specific sets of images (e.g., [Oliveira et al 2017;Cazzolato et al 2017]), or provide extracted visual representations for a particular computational task or data domain related to the images [Cazzolato et al 2016].…”
Section: Introductionmentioning
confidence: 99%
“…A recuperação de dados complexos é frequentemente realizada a partir de comparações baseadas em Relações de Similaridade -RS, e são amplamente exploradas em diferentes tipos de domínios e em diversos trabalhos de Consultas por Similaridade sobre dados complexos armazenados em SGBDRs (RODRIGUES et al, 2020;ZABOT et al, 2019;CAZZOLATO et al, 2019a;VASCONCELOS et al, 2018). Tradicionalmente, consultas por similaridade executam comparações entre pares de representações extraídas sobre um conjunto de dados complexos, sobre os quais são frequentemente aplicados extratores de características, resultando em vetores de características.…”
Section: Lista De Ilustraçõesunclassified
“…Visão Geral de abordagens selecionadas para tratamento de dados faltantes. et al, 2016) kNNI (BATISTA; MONARD, 2003) DTI (NIKFALAZAR et al, 2020) GAIN (YOON et al, 2018) SDAi (ABIRI et al, 2019) BR-Tree (OOI; GOH; TAN, 1998) MOSAIC (OOI; GOH; TAN, 1998) BEE (CANAHUATE et al, 2006) Hollow-Tree (BRINIS et al, 2019)SOLID(RODRIGUES et al, 2020) …”
unclassified