SARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded "down" to an exposed "up" state in order to bind the human ACE2 receptor and infect cells. While snapshots of the "up" and "down" states have been obtained by cryoEM and cryoET, details of the RBD opening transition evade experimental characterization. Here, over 130 μs of weighted ensemble (WE) simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD opening pathways. Together with ManifoldEM analysis of cryo-EM data and biolayer interferometry experiments, we reveal a gating role for the N-glycan at position N343, Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms