2008
DOI: 10.1063/1.2952486
|View full text |Cite
|
Sign up to set email alerts
|

Tamm plasmon polaritons: Slow and spatially compact light

Abstract: We report on the first experimental observation of Tamm plasmon polaritons (TPPs) formed at the interface between a metal and a dielectric Bragg reflector (DBR). In contrast to conventional surface plasmons, TPPs have an in-plane wavevector less than the wavevector of light in vacuum, which allows for their direct optical excitation. The angular resolved reflectivity and transmission spectra of a GaAs∕AlAs DBR covered by Au films of various thicknesses show the resonances associated with the TPP at low tempera… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
207
0
5

Year Published

2010
2010
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 383 publications
(216 citation statements)
references
References 11 publications
4
207
0
5
Order By: Relevance
“…The top layer of the dielectric, labelled the spacer layer, must have the higher of the two refractive indices of the DBR [10]. The interaction between these modes and QD emitters compares favourably to other surface-confined optical modes, such as surface plasmon polaritons: the majority of the mode is located within the lossless, photonic material; they have a parabolic dispersion that is within the light cone, so can be excited without requiring momentum-matching components which complicate miniaturization [11]; and they can be excited with both TE and TM polarized light. Finally, lateral confinement can be added by limiting the lateral dimensions of the metallic layer to make confined Tamm Plasmons (CTPs) [12].…”
Section: Introductionmentioning
confidence: 99%
“…The top layer of the dielectric, labelled the spacer layer, must have the higher of the two refractive indices of the DBR [10]. The interaction between these modes and QD emitters compares favourably to other surface-confined optical modes, such as surface plasmon polaritons: the majority of the mode is located within the lossless, photonic material; they have a parabolic dispersion that is within the light cone, so can be excited without requiring momentum-matching components which complicate miniaturization [11]; and they can be excited with both TE and TM polarized light. Finally, lateral confinement can be added by limiting the lateral dimensions of the metallic layer to make confined Tamm Plasmons (CTPs) [12].…”
Section: Introductionmentioning
confidence: 99%
“…If such a state exists at the interface between a photonic crystal (PhC) and a conducting medium with the effective permittivity ε eff (ω) < 0, the light wave interacts with a surface plasmon, i.e., the collective oscillation of the free electron gas at the conductor surface. The result of interaction between the radiation field and surface plasmon excitation is a Tamm plasmon polariton (TPP) [2], which is observed in experiments as a narrow peak in the energy spectra of a sample [3][4][5]. As was shown in [6][7][8][9][10], the materials with the negative permittivity ( ε eff (ω) < 0) adjacent to a PhC can be both metallic films and nanocomposites with the resonant frequency dispersion.…”
Section: Introductionmentioning
confidence: 95%
“…Методом S-квантования рассчитана вероятность спонтанной эмиссии, и показано, что для высокоэнергетической нечетной моды вероятность спонтанной эмиссии увеличивается на 2 порядка по сравнению с вероятностью эмиссии в свободном пространстве. Локализованные состояния электромагнитного поля на границе металла и брэгговского отражателя -там-мовские плазмоны (ТП) с момента их теоретическо-го предсказания [1,2] и экспериментального обнаруже-ния [3,4] являются объектом интенсивных исследований. Применения ТП связаны с возможностью их примене-ния для локализации света в латеральном направлении в вертикальных микрорезонаторах [5] и использования структур на их основе для создания лазеров [6,7], источ-ников одиночных фотонов [8] и других приборов.…”
Section: (получена 28 сентября 2016 г принята к печати 7 октября 201unclassified