Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Linear solvers for the flow exterior to the hull may be used to solve for the fluid dynamics also in the interior of a tank, as discussed in Newman (2005) and Ludvigsen et al. (2013). This introduces extra, erroneous terms in the radiation part of the pressure in the tank, but due to cancellation in restoring and radiation terms, the total representation of the pressure and the global response is correctly obtained. For some kinds of analysis, specific knowledge is needed of the radiation and restoring parts separately. The cancellation of the extra terms can then not be utilized. Examples of this are stability analysis and eigenvalue analysis. In stability analysis we need to know the actual real global restoring coefficients. In eigenvalue analysis, we should have the separately correct representations of the added mass and restoring coefficients, respectively, to be able to conveniently use them as input to standard eigenvalue solvers. Here, we develop the expressions for the corrected, actual terms of the total added mass and restoring coefficients for tanks. This is used in our computer program for performing eigenvalue analysis. Results for peak global response and natural periods of the structure with the influence of tank dynamics are presented. Comparisons are made with results obtained by a quasi-static method for an FPSO and a ship with more largely extensive tanks. For a completely filled tank, the boundary value problem (BVP) for the velocity potential is reduced to Laplace equation in the fluid domain, subject to a Neuman condition on the fixed boundary and it is not closed. The extra condition of having zero pressure at some point in the tank is then added. Direct re-use of the BVP solver for the external flow, gives an undetermined set of linear equations for the velocity potential in the tank fluid. A typical solver for sets of linear equations may still return a solution, but this will contain a random undetermined constant. After imposing zero pressure in the top of the tank, this solution is still unstable, contaminated by numerical noise. An improved method is introduced by imposing algebraically, in the equation system, the constraint of zero pressure in the top of the tank. This gives a non-singular equation system with a stable solution holding zero pressure in some selected point in the tank.
Linear solvers for the flow exterior to the hull may be used to solve for the fluid dynamics also in the interior of a tank, as discussed in Newman (2005) and Ludvigsen et al. (2013). This introduces extra, erroneous terms in the radiation part of the pressure in the tank, but due to cancellation in restoring and radiation terms, the total representation of the pressure and the global response is correctly obtained. For some kinds of analysis, specific knowledge is needed of the radiation and restoring parts separately. The cancellation of the extra terms can then not be utilized. Examples of this are stability analysis and eigenvalue analysis. In stability analysis we need to know the actual real global restoring coefficients. In eigenvalue analysis, we should have the separately correct representations of the added mass and restoring coefficients, respectively, to be able to conveniently use them as input to standard eigenvalue solvers. Here, we develop the expressions for the corrected, actual terms of the total added mass and restoring coefficients for tanks. This is used in our computer program for performing eigenvalue analysis. Results for peak global response and natural periods of the structure with the influence of tank dynamics are presented. Comparisons are made with results obtained by a quasi-static method for an FPSO and a ship with more largely extensive tanks. For a completely filled tank, the boundary value problem (BVP) for the velocity potential is reduced to Laplace equation in the fluid domain, subject to a Neuman condition on the fixed boundary and it is not closed. The extra condition of having zero pressure at some point in the tank is then added. Direct re-use of the BVP solver for the external flow, gives an undetermined set of linear equations for the velocity potential in the tank fluid. A typical solver for sets of linear equations may still return a solution, but this will contain a random undetermined constant. After imposing zero pressure in the top of the tank, this solution is still unstable, contaminated by numerical noise. An improved method is introduced by imposing algebraically, in the equation system, the constraint of zero pressure in the top of the tank. This gives a non-singular equation system with a stable solution holding zero pressure in some selected point in the tank.
Ultrasonic testing (UT) is a technical way of communicating with materials, but what does that mean? To be able to understand this, we should think about how people communicate with each other—by talking. Humans have vocal cords in their throats, also known as vocal folds, a band of highly elastic connective tissue. When someone wants to talk, their brain sends a signal to the vocal fold, and after receiving the electrical signal, the folds start to vibrate and cause the air molecules flowing around them vibrate as well. This vibration flows through the air molecules to the ears of the other people, causing tiny bones within the ear to vibrate. This mechanical vibration is converted into an electrical signal by stimulation of the sensory cells in the ear and nerve impulses sent to the brain. Through this complex conversion of electrical signal to vibration, and then vibration back to the electrical signal, two human beings talk to each other. In general, the human ear can detect sounds with frequencies between 20 and 20 000 Hz, which is called an audio range. (Frequency means the number of vibrations against the unit time and is expressed in cycles per seconds). Frequencies below 20 Hz are called infrasound and above 20 000 Hz are called ultrasound. The industrial application of ultrasound is the answer to the question, “How can we talk to material?”, which forms the basis of UT. UT is widely used as a nondestructive testing method to examine materials and welds, as well as bondings between the materials. In this article, UT of dissimilar welds shall be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.