Optical beamforming for satellite-based phased-array antenna systems can help reduce the payload weight and footprint by replacing the RF hardware with photonic integrated circuits. In this paper, simulation and measurement results are provided for 1×12 optical power splitters that provide a non-uniform Gaussian radio-frequency beam profile, thus eliminating the need for a separate amplitude modulation stage in the beamforming network. This both simplifies the optical beamforming network and reduces the total optical losses. Two splitter designs were studied: a star-coupler with non-uniform output waveguides and a cascade of tapered MMI couplers with unconstrained splitting ratios. These two designs are shown to achieve the target output power profile with insertion losses of 1.7 dB and 0.5 dB, respectively.