When a distractor appears in close proximity to a saccade target, the saccadic end point is biased towards the distractor. This socalled global effect reduces with the latency of the saccade if the saccade is visually guided. We recently reported that the global effect does not reduce with the latency of a double-step memory-guided saccade. The aim of this study was to investigate why the global effect in memory-guided saccades does not show the typically observed reduction with saccadic latency. One possibility is that reduction of the global effect requires continuous access to visual information about target and distractor locations, which is lacking in the case of a memory-guided saccade. Alternatively, participants may be inclined to routinely preprogram a memoryguided saccade at the moment the visual information disappears, with the result that a memory-guided saccade is typically programmed on the basis of an earlier representation than necessary. To distinguish between these alternatives, two potential targets were presented, and participants were asked to make a saccade to one of them after a delay. In one condition, the target identity was precued, allowing preprogramming of the saccade, while in another condition, it was revealed by a retro cue after the delay. The global effect remained present in both conditions. Increasing visual exposure of target and distractor led to a reduction of the global effect, irrespective of whether participants could preprogram a saccade or not. The results suggest that continuous access to visual information is required in order to eliminate the global effect.