Neurostimulation has emerged as a potential remedy for early mild cognitive impairment (EMCI). However, further exploration is needed on how external stimulation of brain regions promotes the transition of the brain state from EMCI to health and the selection of target locations. In this study, a functional magnetic resonance imaging dataset was used to evaluate the brain states of healthy individuals and patients with EMCI to explore the probabilistic metastable substate space, identifying abnormal manifestations of EMCI. Stimulation targets were then identified and stimulated to achieve complete controllability of the effective connection network for EMCI. A whole‐brain model successfully fitted the brain state of the patients with EMCI based on diffusion tensor imaging data. Based on this whole‐brain model, stimulation of the hippocampus, medial frontal gyrus, suboccipital gyrus, and fusiform gyrus can promote the transformation of the brain state from EMCI to health. The findings reveal the underlying brain mechanisms of cognitive decline in patients with EMCI and the stimulation targets of the neural mechanisms of EMCI restoration, which could help in designing more effective therapeutic interventions for EMCI.