Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Thanks to the mass adoption of internet and mobile devices, users of the social media can seamlessly and spontaneously connect with their friends, followers and followees. Consequently, social media networks have gradually become the major venue for broadcasting and relaying information, and is casting great influences on the people in many aspects of their daily lives. Thus locating those influential users in social media has become crucially important for the successes of many viral marketing, cyber security, politics, and safety-related applications. In this study, we address the problem through solving the tiered influence and activation thresholds target set selection problem, which is to find the seed nodes that can influence the most users within a limited time frame. Both the minimum influential seeds and maximum influence within budget problems are considered in this study. Besides, this study proposes several models exploiting different requirements on seed nodes selection, such as maximum activation, early activation and dynamic threshold. These time-indexed integer program models suffer from the computational difficulties due to the large numbers of binary variables to model influence actions at each time epoch. To address this challenge, this paper designs and leverages several efficient algorithms, i.e., Graph Partition, Nodes Selection, Greedy algorithm, recursive threshold back algorithm and two-stage approach in time, especially for large-scale networks. Computational results show that it is beneficial to apply either the breadth first search or depth first search greedy algorithms for the large instances. In addition, algorithms based on node selection methods perform better in the long-tailed networks.
Thanks to the mass adoption of internet and mobile devices, users of the social media can seamlessly and spontaneously connect with their friends, followers and followees. Consequently, social media networks have gradually become the major venue for broadcasting and relaying information, and is casting great influences on the people in many aspects of their daily lives. Thus locating those influential users in social media has become crucially important for the successes of many viral marketing, cyber security, politics, and safety-related applications. In this study, we address the problem through solving the tiered influence and activation thresholds target set selection problem, which is to find the seed nodes that can influence the most users within a limited time frame. Both the minimum influential seeds and maximum influence within budget problems are considered in this study. Besides, this study proposes several models exploiting different requirements on seed nodes selection, such as maximum activation, early activation and dynamic threshold. These time-indexed integer program models suffer from the computational difficulties due to the large numbers of binary variables to model influence actions at each time epoch. To address this challenge, this paper designs and leverages several efficient algorithms, i.e., Graph Partition, Nodes Selection, Greedy algorithm, recursive threshold back algorithm and two-stage approach in time, especially for large-scale networks. Computational results show that it is beneficial to apply either the breadth first search or depth first search greedy algorithms for the large instances. In addition, algorithms based on node selection methods perform better in the long-tailed networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.