The generation of mutants and transgenes are indispensible for biomedical research. In the nematode Caenorhabditis elegans, a series of methods have been developed to introduce genome modifications, including random mutagenesis by chemical reagents, ionizing radiation and transposon insertion. In addition, foreign DNA can be integrated into the genome through microparticle bombardment approach or by irradiation of animals carrying microinjected extrachromosomal arrays. Recent research has revolutionized the genome engineering technologies by using customized DNA nucleases to manipulate particular genes and genomic sequences. Many streamlined editing strategies are developed to simplify the experimental procedure and minimize the cost. In this review, we will summarize the recent progress of the site-specific genome editing methods in C. elegans, including the Cre/LoxP, FLP/FRT, MosTIC system, zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease. Particularly, the recent studies of CRISPR/Cas9-mediated genome editing method in C. elegans will be emphatically discussed.