“…Due to this generality, its statistical applications are diverse and widespread, going beyond the construction of an efficient estimator of a pathwise differentiable target parameter for arbitrary semi-parametric models and pathwise differentiable target parameter mappings: collaborative targeted maximum likelihood estimation (CTMLE) for targeted estimation of the nuisance parameter in the canonical gradient (van der Laan and Rose, 2011; van der Laan and Gruber, 2010; Gruber and van der Laan, 2012; Stitelman and van der Laan, 2010; Gruber and van der Laan, 2010); cross-validated TMLE (CV-TMLE) to robustify the bias-reduction of the TMLE-step (Zheng and van der Laan, 2011; van der Laan and Rose, 2011); guaranteed improvement w.r.t. a user supplied asymptotically linear estimator (Gruber and van der Laan, 2012; Lendle et al, 2013); targeted initial estimator through empirical efficiency maximization (Rubin and van der Laan, 2008; van der Laan and Rose, 2011); double robust inference by targeting censoring/treatment mechanism (van der Laan, 2012); CV-TMLE to estimate data adaptive target parameters such as the risk of a candidate estimator and thereby develop a super-learner that uses CV-TMLE instead of the normal cross-validated empirical risk (van der Laan and Petersen, 2012; Díaz and van der Laan, 2013, In press); higher-order TMLE in order to replace in the above proof R 2 () by a higher order term (Carone et al, 2014; Diaz et al, 2015). …”