Nuclear imaging modalities can detect somatostatin receptor type 2 (SSTR2) in vivo as a potential marker of local post-MI inflammation. SSTR2+ macrophages are thought to be the main substrate for SSTR-targeted radioimaging. However, the distribution of SSTR2+ cells in the MI patients’ myocardium is unknown. Using immunohistochemistry, we investigated the distribution of SSTR2+ cells in the myocardium of patients who died during the MI inflammatory phase (n = 7) compared to the control group of individuals with fatal trauma (n = 3). Inflammatory cellular landscapes evolve in a wave front-like pattern, so we divided the myocardium into histological zones: the infarct core (IC), the border zone (BZ), the remote zone (RZ), and the peri-scar zone (PSZ). The number of SSTR2+ neutrophils (NPs), SSTR2+ monocytes/macrophages (Mos/MPs), and SSTR2+ vessels were counted. In the myocardium of the control group, SSTR2+ NPs and SSTR2+ Mos/MPs were occasional, SSTR2+ vessels were absent. In the RZ, the picture was similar to the control group, but there was a lower number of SSTR2+ Mos/MPs in the RZ. In the PSZ, SSTR2+ vessel numbers were highest in the myocardium. In the IC, the median number of SSTR2+ NPs was 200 times higher compared to the RZ or control group myocardium, which may explain the selective uptake of SSTR-targeted radiotracers in the MI area during the inflammatory phase of MI.