Acute pancreatitis (AP) is a potentially lethal inflammatory disease that lacks specific therapy. Damaged pancreatic acinar cells are believed the site of AP initiation. The primary function of these cells is the synthesis, storage, and export of digestive enzymes. Beginning in the endoplasmic reticulum and ending with secretion of proteins stored in zymogen granules, distinct pancreatic organelles use ATP produced by mitochondria to move and modify nascent proteins through sequential vesicular compartments. Compartment-specific accessory proteins concentrate cargo, promote vesicular budding, targeting and fusion. The autophagy-lysosomal-endosomal pathways maintain acinar cell homeostasis by removing damaged/dysfunctional organelles and recycling cell constituents for substrate and energy. Here, we discuss studies in experimental and genetic AP models, primarily from our groups, which show that acinar cell injury is mediated by distinct mechanisms of organelle dysfunction involved in protein synthesis and trafficking, secretion, energy generation, and autophagy. These early AP events (often first manifest by abnormal cytosolic Ca 2+ signaling) in the acinar cell trigger the inflammatory and cell death