Recently, we reported programmed Cas9 mediated insertion of a reporter gene into a gene safe harbor site, GSH1, of Schistosoma mansoni via homology-directed repair (HDR) using overlapping guide RNAs. Here, we report efficient and precise CRISPR/Cas12a-mediated homology directed insertion (knockin, KI) of a 5’ C6-PEG10-modified double-stranded transgene bearing microhomology arms, 50 nt in length, at GSH1. At the outset, we undertook bioinformatic and computational analysis following by experimental verification of the regulatory activity of endogenous schistosome ubiquitin (SmUbi) promoter and terminator, to drive strong reporter gene expression. Green fluorescent protein activity driven by SmUbi followed electroporation-mediated transfection of schistosome eggs. HDR induced by RNA-guided CRISPR/Cas12a, which releases overhanging DNA strands of 18-24, delivered more efficient KI than CRISPR/Cas9. In this non-model pathogen, programmed KI facilitated precise chromosomal integration of the reporter-gene with at GSH1. The approach advances schistosome transgenesis field and may also advance functional genomics and transfection methods in related parasitic and non-parasitic helminths, which hitherto lack these tools.