SummaryMetastasis involves tumor cell detachment from the primary tumor, and acquisition of migratory and invasive capabilities. These capabilities are mediated by multiple events, including loss of cell-cell contact, an increase in focal adhesion turnover and failure to maintain a normal cell polarity. We have previously reported that silencing of the expression of the zipcode-binding protein IMP1/ZBP1 in breast tumor patients is associated with metastasis. IMP1/ZBP1 selectively binds to a group of mRNAs that encode important mediators for cell adhesion and motility. Here, we show that in both T47D and MDA231 human breast carcinoma cells IMP1/ZBP1 functions to suppress cell invasion. Binding of ZBP1 to the mRNAs encoding E-cadherin, b-actin, a-actinin and the Arp2/3 complex facilitates localization of the mRNAs, which stabilizes cell-cell connections and focal adhesions. Our studies suggest a novel mechanism through which IMP1/ZBP1 simultaneously regulates the local expression of many cell-motility-related mRNAs to maintain cell adherence and polarity, decrease focal adhesion turnover and maintain a persistent and directional motility.