BACKGROUND AND OBJECTIVES:
Anatomic features of neuromas have been explored in imaging studies. However, there has been limited research into these features using resected, ex vivo human neuroma specimens. The aim of this study was to investigate the influence that time may have on neuroma growth and size, and the clinical significance of these parameters.
METHODS:
Patients who underwent neuroma excision between 2022 through 2023 were prospectively included in this study. Neuroma specimens were obtained after operative resection. Standardized neuroma size measurements, expressed as a neuroma-to-nerve ratio (NNR), were conducted with ImageJ software. Pain data (numeric rating scale, 0-10) were prospectively recorded during preoperative evaluation, and patient factors were collected from chart reviews.
RESULTS:
Fifty terminal neuroma specimens from 31 patients were included, with 94.0% of the neuromas obtained from individuals with amputations. Most neuromas were excised from the lower extremities (n = 44, 88.0%). The neuromas had a median NNR of 2.45, and the median injury to neuroma excision interval was 6.3 years. Larger NNRs were associated with a longer injury to neuroma excision interval and with a smaller native nerve diameter. In addition, sensory nerves were associated with a larger NNR compared with mixed nerves. NNR was not associated with preoperative pain or with anatomical nerve distribution.
CONCLUSION:
This study suggests that neuromas seem to continue to grow over time and that smaller nerves may form relatively larger neuromas. In addition, sensory nerves develop relatively larger neuromas compared with mixed nerves. Neuroma size does not appear to correlate with pain severity. These findings may stimulate future research efforts and contribute to a better understanding of symptomatic neuroma development.