Cardiovascular diseases are the leading cause of death across the world. For decades, researchers have been studying the causes of cardiovascular disease, yet many of them remain undiscovered or poorly understood. Network medicine is a recently expanding, integrative field that attempts to elucidate this issue by conceiving of disease as the result of disruptive links between multiple interconnected biological components. Still in its nascent stages, this revolutionary application of network science facilitated a number of important discoveries in complex disease mechanisms. As methodologies become more advanced, network medicine harbors the potential to expound on the molecular and genetic complexities of disease to differentiate how these intricacies govern disease manifestations, prognosis, and therapy. This is of paramount importance for confronting the incredible challenges of current and future cardiovascular disease research. In this review, we summarize the principal molecular and genetic mechanisms of common cardiac pathophysiologies as well as discuss the existing knowledge on therapeutic strategies to prevent, halt, or reverse these pathologies.