Antibiotic resistance in Gram-positive pathogens is a relevant concern, particularly in the hospital setting. Several antibiotics are now available to treat these drug-resistant pathogens, such as daptomycin, dalbavancin, linezolid, tedizolid, ceftaroline, ceftobiprole, and fosfomycin. However, antibiotic resistance can also affect these newer molecules. Overall, this is not a frequent phenomenon, but it is a growing concern in some settings and can compromise the effectiveness of these molecules, leaving few therapeutic options. We reviewed the available evidence about the epidemiology of antibiotic resistance to these antibiotics and the main molecular mechanisms of resistance, particularly methicillin-resistant Sthaphylococcus aureus, methicillin-resistant coagulase-negative staphylococci, vancomycin-resistant Enterococcus faecium, and penicillin-resistant Streptococcus pneumoniae. We discussed the interpretation of susceptibility tests when minimum inhibitory concentrations are not available. We focused on the risk of the emergence of resistance during treatment, particularly for daptomycin and fosfomycin, and we discussed the strategies that can be implemented to reduce this phenomenon, which can lead to clinical failure despite appropriate antibiotic treatment. The judicious use of antibiotics, epidemiological surveillance, and infection control measures is essential to preserving the efficacy of these drugs.