In the last decade, experimental research has intensely focused on metabolic reprogramming of tumor cells, which contributes to cancer cell adaptation and survival in different and hostile microenvironments. Metabolic reprogramming consists of the switch of tumor cells from aerobic or anaerobic glycolysis to oxidative phosphorylation. A comprehensive vision of the metabolic scenario involving functionally different tumor cell subpopulations was proposed as a necessary premise to the design of new strategies of diagnosis and therapy. Special focus has been put on the role of acidosis of certain tumor regions, a very important although frequently neglected aspect.Despite the progresses in cancer therapy, the escaping of tumor cancer cells from host defense and relapse of disease still represent main issues in tumor-bearing patients. Indeed, malignant cells are provided with a tremendous plasticity that they exploit to survive, replicate and invade in stressed microenvironments. Such plasticity allows cancer cells to easily modify their properties, including metabolism, switching back and forth from aerobic or anaerobic glycolysis to oxidative phosphorylation (OxPhos). It is well ascertained that a suitable metabolic profile of cancer cells is necessary to sustain tumor growth, local invasion and distant colonization. Thus, cancer metabolism needs to be considered in view of the design of new strategies to control tumor progression.Keywords: "Warburg effect"; Glucose level; Hypoxia; Hypoxiainducible factor-1α; Acidosis; Oxidative phosphorylation
Tumor Microenvironment and Metabolic Reprogramming of Tumor Cells Warburg effectProliferating tumor cells have been largely shown to adopt "aerobic glycolysis" as the main metabolic profile, the so-called "Warburg effect" [1]. Indeed, most cancer cells use huge amounts of glucose even when oxygen tension is high enough to sustain mitochondrial respiration in normal cells. A link between oncogenesis and glucose metabolism is the activating mutations in phosphoinositide 3-kinase (PI3K) or overexpression of the AKT oncogenes, promoting expression and localization of the high affinity glucose transporters on the plasma membrane [2]. This is followed by lactic acid fermentation in the cytosol and lactate export from the cell [3]. This alteration of glucose metabolism acquired practical importance in clinical settings following the development of 18-fluorodeoxyglucose-positron emission tomography imaging [4,5]. Furthermore, it is well recognized that a high serum level of lactate dehydrogenase (LDH) represents a biomarker of poor prognosis in different cancers [6].When Warburg metabolism is favored, a relatively low level of pyruvate is metabolized in the mitochondria and the energy gain is only 2 ATP per molecule of glucose. Thus, fermentation of glucose to lactic acid is an inefficient pathway, but, very important, it is a fast energy supplier (about 100 folds faster than OxPhos). Moreover, the aerobic glycolytic phenotype confers a significant proliferative advantage a...