Combination antiretroviral therapy (ART) suppresses viral replication to undetectable levels, reduces mortality and morbidity, and improves the quality of life of people living with HIV (PWH). However, ART cannot cure HIV infection because it is unable to eliminate latently infected cells. HIV latency may be regulated by different HIV transcription mechanisms, such as blocks to initiation, elongation, and post-transcriptional processes. Several latency-reversing (LRA) and -promoting agents (LPA) have been investigated in clinical trials aiming to eliminate or reduce the HIV reservoir. However, none of these trials has shown a conclusive impact on the HIV reservoir. Here, we review the cellular and viral factors that regulate HIV-1 transcription, the potential pharmacological targets and genetic and epigenetic editing techniques that have been or might be evaluated to disrupt HIV-1 latency, the role of miRNA in post-transcriptional regulation of HIV-1, and the differences between the mechanisms regulating HIV-1 and HIV-2 expression.