This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure–Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.