Oncogenic transformation is often associated with an increased expression of the cAMP response element binding (CREB) transcription factor controlling the expression of genes involved in cell proliferation, cell cycle, apoptosis, and tumor development, but a link between K-RAS V12 -induced transformation and CREB has not yet been determined. Therefore, the constitutive and/or inhibitor-regulated mRNA and protein expression of CREB and signal transduction components and growth properties of parental fibroblasts, K-RAS V12 -transformed counterparts, shCREB K-RAS V12 transfectants and human colon carcinoma cells were determined. Increased CREB transcript and protein levels accompanied by an enhanced CREB activity was detected in K-RAS V12 -transformed murine fibroblasts and K-RAS V12 -mutated human tumor cells, which is dependent on the MAPK/MEK, PI3K, and/or PKC signal transduction. Immunohistochemical (IHC) staining of colorectal carcinoma lesions and murine tumors, with known KRAS gene mutation status, using antibodies specific for CREB and phospho-CREB, revealed a mechanistic link between CREB expression and K-RAS V12 -mutated colorectal carcinoma lesions when compared with control tissues. Silencing of CREB by shRNA and/or treatment with a CREB inhibitor (KG-501) reverted the neoplastic phenotype of K-RAS V12 transformants as demonstrated by a more fibroblast-like morphology, enhanced apoptosis sensitivity, increased doubling time, decreased migration, invasion and anchorage-independent growth, reduced tumorigenesis, and enhanced immunogenicity in vivo. The impaired shCREB-mediated invasion of K-RAS V12 transformants was accompanied by a transcriptional downregulation of different matrix metalloproteinases (MMP) coupled with their reduced enzymatic activity.Implications: CREB plays a key role in the K-RAS V12