The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury.