Guanine-rich DNA sequences can fold into four-stranded, noncanonical secondary structures called G-quadruplexes (G4s). G4s were initially considered a structural curiosity, but recent evidence suggests their involvement in key genome functions such as transcription, replication, genome stability, and epigenetic regulation, together with numerous connections to cancer biology. Collectively, these advances have stimulated research probing G4 mechanisms and consequent opportunities for therapeutic intervention. Here, we provide a perspective on the structure and function of G4s with an emphasis on key molecules and methodological advances that enable the study of G4 structures in human cells. We also critically examine recent mechanistic insights into G4 biology and protein interaction partners and highlight opportunities for drug discovery.
Beyond the DNA Double HelixA chemist's perspective on the function of a molecule, or a system of molecules, is typically led by a consideration of how molecular structure dictates function. The most widely recognised DNA structure is that of the classical DNA double helix [1], which defines a structural basis for the genetic code via defined base-pairing. Yet, it is evident that DNA is structurally dynamic and capable of adopting alternative secondary structures. One such class of DNA secondary structure is the four-stranded Gquadruplex (G4). Herein, we discuss some of the key scientific history that has shaped our understanding of this structural motif, its probable functions in biology, and major unanswered questions that remain to be solved.