Purpose of reviewThe purpose of this review is to discuss recent findings in intestinal phosphorus absorption pathways, particularly the contributions of paracellular versus transcellular absorption, and the differential findings from studies using in vitro versus in vivo techniques of assessing phosphorus absorption in experimental animal studies.Recent findingsExperimental animal studies show that in vivo effects of low phosphorus diets, 1,25D, and chronic kidney disease on intestinal phosphorus absorption efficiency contradict effects previously established ex vivo/in vitro. Recent in vivo studies also suggest that the paracellular pathway accounts for the majority of phosphorus absorption in animals across very low to high luminal phosphate concentrations. The data from experimental animal studies correspond to recent human studies showing the effectiveness of targeted inhibition of paracellular phosphate absorption. Additionally, recent human studies have demonstrated that NaPi-2b inhibition alone does not appear to be effective in lowering serum phosphate levels in patients with chronic kidney disease. Pursuit of other transcellular phosphate transporter inhibitors may still hold promise.SummaryIn vivo animal and human studies have added to our understanding of intestinal phosphorus absorption pathways, regulation, and mechanisms. This is beneficial for developing effective new strategies for phosphate management in patients with chronic kidney disease.