Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose of review Advances in DNA sequencing and analysis of the respiratory microbiome highlight its close association with bronchiectasis phenotypes, revealing fresh opportunities for diagnosis, stratification, and personalized clinical intervention. An under-recognized condition, bronchiectasis is increasingly the subject of recent large-scale, multicentre, and longitudinal clinical studies including detailed analysis of the microbiome. In this review, we summarize recent progress in our understanding of the bronchiectasis microbiome within the context of its potential use in treatment decisions. Recent findings Diverse microbiome profiles exist in bronchiectasis, in line with the established disease heterogeneity including treatment response. Classical microbiology has established Pseudomonas aeruginosa and Haemophilus influenza as two microbial markers of disease, while holistic microbiome analysis has uncovered important associations with less common bacterial taxa including commensal an/or pathobiont species, including the emerging role of the fungal mycobiome, virome, and interactome. Integration of airway microbiomes with other high-dimensional biological and clinical datasets holds significant promise to determining treatable traits and mechanisms of disease related to the microbiome. Summary The bronchiectasis microbiome is an emerging and key area of study with significant implications for understanding bronchiectasis, influencing treatment decisions and ultimately improving patient outcomes.
Purpose of review Advances in DNA sequencing and analysis of the respiratory microbiome highlight its close association with bronchiectasis phenotypes, revealing fresh opportunities for diagnosis, stratification, and personalized clinical intervention. An under-recognized condition, bronchiectasis is increasingly the subject of recent large-scale, multicentre, and longitudinal clinical studies including detailed analysis of the microbiome. In this review, we summarize recent progress in our understanding of the bronchiectasis microbiome within the context of its potential use in treatment decisions. Recent findings Diverse microbiome profiles exist in bronchiectasis, in line with the established disease heterogeneity including treatment response. Classical microbiology has established Pseudomonas aeruginosa and Haemophilus influenza as two microbial markers of disease, while holistic microbiome analysis has uncovered important associations with less common bacterial taxa including commensal an/or pathobiont species, including the emerging role of the fungal mycobiome, virome, and interactome. Integration of airway microbiomes with other high-dimensional biological and clinical datasets holds significant promise to determining treatable traits and mechanisms of disease related to the microbiome. Summary The bronchiectasis microbiome is an emerging and key area of study with significant implications for understanding bronchiectasis, influencing treatment decisions and ultimately improving patient outcomes.
Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments. Next-generation sequencing has identified intricate inter-microbe association networks that comprise true mutualistic or antagonistic direct or indirect relationships in the respiratory tract. In this review, the tripartite interaction of bacteria, fungi and the mammalian host is addressed to provide an integrated view of the microbial-host cross-talk in lung health and diseases from an immune and metabolic perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.