The Gram-negative
pathogen Pseudomonas
aeruginosa causes severe infections mainly in immunocompromised
or cystic fibrosis
patients and is able to resist antimicrobial treatments. The extracellular
lectin LecB plays a key role in bacterial adhesion to the host and
biofilm formation. For the inhibition of LecB, we designed and synthesized
a set of fucosyl amides, sulfonamides, and thiourea derivatives. Then,
we analyzed their binding to LecB in competitive and direct binding
assays. We identified β-fucosyl amides as unprecedented high-affinity
ligands in the two-digit nanomolar range. X-ray crystallography of
one α- and one β-anomer of N-fucosyl
amides in complex with LecB revealed the interactions responsible
for the high affinity of the β-anomer at atomic level. Further,
the molecules showed good stability in murine and human blood plasma
and hepatic metabolism, providing a basis for future development into
antibacterial drugs.