Learning often involves trial-and-error, i.e. repeating behaviours that lead to desired outcomes, and adjusting behaviour when outcomes do not meet our expectations and thus lead to prediction errors (PEs). PEs have been shown to be reflected in the reward positivity (RewP), an event-related potential (ERP) component between 200 and 350 ms after performance feedback which is linked to striatal processing and assessed via electroencephalography (EEG). Here we show that this is also true for delayed feedback processing, for which a critical role of the hippocampus has been suggested. We found a general reduction of the RewP for delayed feedback, but the PE was similarly reflected in the RewP and the later P300 for immediate and delayed positive feedback, while no effect was found for negative feedback. Our results suggest that, despite processing differences between immediate and delayed feedback, positive PEs drive feedback processing and learning irrespective of delay.