2022
DOI: 10.48550/arxiv.2207.01391
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Task-oriented Self-supervised Learning for Anomaly Detection in Electroencephalography

Abstract: Accurate automated analysis of electroencephalography (EEG) would largely help clinicians effectively monitor and diagnose patients with various brain diseases. Compared to supervised learning with labelled disease EEG data which can train a model to analyze specific diseases but would fail to monitor previously unseen statuses, anomaly detection based on only normal EEGs can detect any potential anomaly in new EEGs. Different from existing anomaly detection strategies which do not consider any property of una… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?