Crowdsourcing significantly augments the creativity of the public and has become an indispensable component of many problem-solving pipelines. The main challenge, however, is the effective identification of malicious participators while distributing crowdsourcing tasks. In this paper, we propose a novel task-distributing system named Task-Distributing system of crowdsourcing based on Social Relation Cognition (TDSRC) to select qualified participators. First, we divided the tasks into categories according to task themes. Then, we constructed and calculated the Abilities Set (AS), Abilities Values (AVs), and the Friends’ Abilities Matrix (FAM) by using the historical interactive texts between a given task publisher (requester) and its friends. When a requester distributes a task, TDSRC can generate the candidate participators’ sequence based on the task needs and FAM. Finally, the best-matched friends in the sequence are selected as the task receivers (solvers), thus producing a personal FAM to disseminate the tasks. The experimental results indicate that (1) the proposed system can accurately and effectively discover the requester’s friends’ abilities and select appropriate solvers and (2) the natural trust relationship in the social network reduces fraudsters and enhances the quality of crowdsourcing services.