2021
DOI: 10.48550/arxiv.2108.06980
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Task-Sensitive Concept Drift Detector with Constraint Embedding

Abstract: Detecting drifts in data is essential for machine learning applications, as changes in the statistics of processed data typically has a profound influence on the performance of trained models. Most of the available drift detection methods are either supervised and require access to the true labels during inference time, or they are completely unsupervised and aim for changes in distributions without taking label information into account. We propose a novel task-sensitive semi-supervised drift detection scheme,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?