Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Task-specific tremor (TST) is a specific type of tremor that occurs when performing or attempting to perform a specific task, such as writing or playing a musical instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only be induced by conducting a specific task, while others can be elicited when adopting a particular position simulating a task. The pathophysiology of TST is controversial. Whether TST is an isolated tremor syndrome, a spectrum of dystonic tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from electrophysiological studies suggests that TST patients have normal reciprocal inhibition responses but abnormal motor cortical excitability, especially relating to the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery study and eyeblink classical conditioning studies demonstrated possible hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients with TST. Functional MRI studies have further shown that patients with TST have reduced functional connectivity in the cerebellum, similar to patients with DTS and ET. Due to variable methodologies and the sparsity of functional MRI studies in TST, it remains uncertain if patients with TST share the connectivity abnormalities between the cortical or subcortical areas that have been demonstrated in patients with DTS. Comprehensive electrophysiological and functional neuroimaging studies may help to elucidate the pathophysiology of TST.
Task-specific tremor (TST) is a specific type of tremor that occurs when performing or attempting to perform a specific task, such as writing or playing a musical instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only be induced by conducting a specific task, while others can be elicited when adopting a particular position simulating a task. The pathophysiology of TST is controversial. Whether TST is an isolated tremor syndrome, a spectrum of dystonic tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from electrophysiological studies suggests that TST patients have normal reciprocal inhibition responses but abnormal motor cortical excitability, especially relating to the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery study and eyeblink classical conditioning studies demonstrated possible hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients with TST. Functional MRI studies have further shown that patients with TST have reduced functional connectivity in the cerebellum, similar to patients with DTS and ET. Due to variable methodologies and the sparsity of functional MRI studies in TST, it remains uncertain if patients with TST share the connectivity abnormalities between the cortical or subcortical areas that have been demonstrated in patients with DTS. Comprehensive electrophysiological and functional neuroimaging studies may help to elucidate the pathophysiology of TST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.