Surface modifications of poly(lactide-co-glycolide) microparticles with different polycationic electrolytes have mainly been studied for conjugation to antigens and/or adjuvants. However, the in vivo immunological effects of using surface charged particles have not been address yet. In this study, microparticles were coated or not with protamine, a cationic and arginine-rich electrolyte that confers microparticles with a positively surface charge. We then evaluated the potential of protamine-coatings to assist the induction of immune responses in mice. Interestingly, enhanced antibodies and T-cell responses were observed in mice treated with the coated particles. In vitro studies suggested that the improved immunological performance was mediated by an increased uptake. Indeed, protamine-coated particles that carried a plasmid were even internalised into non-phagocytic cells and to cause their transfection. These results open the way for further research into a novel technology that combines the use protamine for facilitated cell penetration of that and biodegradable microparticles for prolonged antigen or drug release.