In this paper, we study the module-theoretic structure of classical Iwasawa modules. More precisely, for a finite abelian p-extension K/k of totally real fields and the cyclotomic $$\mathbb {Z}_p$$
Z
p
-extension $$K_{\infty }/K$$
K
∞
/
K
, we consider $$X_{K_{\infty },S}={{\,\textrm{Gal}\,}}(M_{K_{\infty },S}/K_{\infty })$$
X
K
∞
,
S
=
Gal
(
M
K
∞
,
S
/
K
∞
)
where S is a finite set of places of k containing all ramifying places in $$K_{\infty }$$
K
∞
and archimedean places, and $$M_{K_{\infty },S}$$
M
K
∞
,
S
is the maximal abelian pro-p-extension of $$K_{\infty }$$
K
∞
unramified outside S. We give lower and upper bounds of the minimal numbers of generators and of relations of $$X_{K_{\infty },S}$$
X
K
∞
,
S
as a $$\mathbb {Z}_p[[{{\,\textrm{Gal}\,}}(K_{\infty }/k)]]$$
Z
p
[
[
Gal
(
K
∞
/
k
)
]
]
-module, using the p-rank of $${{\,\textrm{Gal}\,}}(K/k)$$
Gal
(
K
/
k
)
. This result explains the complexity of $$X_{K_{\infty },S}$$
X
K
∞
,
S
as a $$\mathbb {Z}_p[[{{\,\textrm{Gal}\,}}(K_{\infty }/k)]]$$
Z
p
[
[
Gal
(
K
∞
/
k
)
]
]
-module when the p-rank of $${{\,\textrm{Gal}\,}}(K/k)$$
Gal
(
K
/
k
)
is large. Moreover, we prove an analogous theorem in the setting that K/k is non-abelian. We also study the Iwasawa adjoint of $$X_{K_{\infty },S}$$
X
K
∞
,
S
, and the minus part of the unramified Iwasawa module for a CM-extension. In order to prove these theorems, we systematically study the minimal resolutions of $$X_{K_{\infty },S}$$
X
K
∞
,
S
.